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Size-dispersity effects in two-dimensional melting
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In order to investigate the effect of size dispersity on two-dimensional melting transitions, hard-disk systems
with equimolar bidispersity are studied by means of particle dynamics simulations. From the nonequilibrium
relaxation behaviors of bond-orientational order parameters, we findidhtttere is a critical dispersity at
which the melting transition of the hexagonal solid vanishes(@ndhe quadratic structure is metastable in a
certain region of the dispersity-density parameter space. These results suggest that the dispersity not only
destroys order but produces new structures under certain specific conditions.
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Recently, there has been considerable interest in the melsystem was studied by the NER method. The critical pgint
ing behavior of systems with size dispersity, i.e., these sysbetween the hexatic and solid phases was determined by a
tems in which the radii of constituent particles are not alldynamic scaling analysislO] and the critical exponent was
identical. The randomness involved in the size dispersity oflso determined by observing the fluctuation of the order
particles has been found to play an essential role in the bggarametef{11]. This scaling technique for determining the
haviors of complex systems such as colloidal systems anuhelting point can be applied directly to the system with dis-
granular media; for example, highly inhomogeneous forcepersity.
networks are involved because of size dispersity in granular In this work, hard-disk systems with equimolar bidisper-
media[1] and in segregation behavior in a rotating drigh  Sity (two kinds of particles of the same numpere treated.
Therefore, investigations of the influence of size dispersitylhe density of the system is defined to ie4={'r?/A, with
will be fruitful for understanding such complex systems. Thethe number of particlel, radiusr;, and area of the syste/
effect of the size dispersity was first treated by Dickinson'Vith this definition, the density is normalized to be 1 when
and Parkef3]. They investigated the phase diagram of alh€ Systém is in the quadratic dense packing configuration.
model colloidal dispersion. Vermélen and Ito studied the!N€ dispersityo is defined by the ratio of the standard de-
melting behavior of elastic-disk systerf. By observing a viation to the average radius. For the equimolar bidisperse

plateau in the pressure-density diagram, they found thatthe@'ft)em’U:(ra_rb)/(raHb) with two radii ry and ry(ra
are no quantitative differences between the behaviors of bi- 'Ib'h | t densitv of th tem d d its di
nary and Gaussian distributed dispersion systems. They alsstlnty Ir? t%gsiﬁznit:rrl’?(l)zo%isp:rssgss;e/gt]emeptig (;Q‘Ioc;r;sltspalcslzﬁg
found that the intermediate phase between the solid and the 7. L T N~
fluid phase vanishes aboSe a critical dispersity. Sadr_conﬂguranon 's the hexagonal one and its density is32/

Lahijany et al. studied the density-dispersity phase diagramHere’ the closest density of the hexagonal packint con-

) sidered in order to investigate the effect of dispersity. The
of Lennard-Jones particle systerfts]. They observed that |5qest hexagonal packing with the dispersity is achieved

there is a critical value of dispersity above which the phas€ nhen the larger particles are just in contfete Fig. 1a)].
transition between the solid and fluid phases become of firsihe closest density is expected to be

order. They concluded that there is a multicritical point in the

density-dispersity phase diagram. _ ra+rp 1)
In spite of these studies, two issues remain; the reason Ph \Erg '

why the melting transition disappears, and the possibility of _ )

other regular structures in the system with dispersity asig&auation(l) is also expressed to be

from the hexagonal structure. In order to answer these ques- 2 A+1

tions, the hard-disk system with size dispersity is studied in pn(o) = \_gm (2)

this work by observing the nonequilibrium behavior of bond- _
orientational order parameters. A method to study criticalClearly, p,(0)=2/v3 whenr,=r,. While Eq.(2) is a simply
phenomena using the nonequilibrium relaxation process oflecreasing function of dispersity, the melting point will
systems is called the nonequilibrium relaxatidNER)

method. This method provides critical points and critical ex-
ponents accuratelyg,7]. It has also been applied to investi- ‘

(@) ®) o

—_ e

gate the Kosterlitz-Thouled&T) transition[8] and random

systemq 9]. Recently, the melting behavior of the hard-disk AYA@

*Present address: Department of Complex Systems Science,
Graduate School of Information Science, Nagoya University, Fu- FIG. 1. Structures of the bidisperse systéa)Hexagonal struc-
rouchou, Chikusaku, Nagoya 464-8601, Japan. ture. (b) Quadratic structure.
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FIG. 2. Predicted phase boundaries of the equimolar bidisperse
systems. Units of all plots in this paper are dimensionless. Solid
lines: 1. Upper density limit of the hexagonal structpgéo) in Eq.

(2). 2. The highest density of the hexagonal packimg2/3. 3. A
condition for highest density of the quadratic packing in 8). 4.
Another condition for the quadratic packing in E4). Dashed lines

are expected lower boundaries of the hexatic 5 and of the quadratic
solid 6. Other possible structures are not shown here.

shift to a higher density with a larger dispersity since it be- Yo 10° 100 108 108 107

comes more difficult to maintain a regular structure with Y1(e)

dispersity. Therefore, the melting point will disappear in the ) . .

dispersity-density parameter space when the melting density FIG- 3. The system 0&=0.06. The decimal logarithm is taken

becomes higher than the highest density of the hexagon r both axes(a) Relaxation behavior of. (p) Scaled data. While

structure. the data ofp=<0.912 are collapsed to the single curve, the data of
For the case of the bidisperse system, the regular qud.=0-914 are not

dratic structure can be considered as shown in Fi@).1

There are two conditions in the relation between density andnd becomes 0 when the structure is completely disordered.

dispersity; one is that overlapping does not occur betweemrherefore,¢q describes how close the system is to the per-

two larger particles and the other is that overlapping does ncfect hexagonal structure. The fourfold paramefgris simi-

occur between larger and smaller particles. These conditiongrly defined asp,=(exp(4i6)). This parametetp, describes

can be expressed wiih as how close the system is to the perfect quadratic structure.
2(02+1) We perform particle simulations and observe the nonequi-
Pq< e and (3)  librium relaxation behavior of the BOO parameters. The

starting configuration is set to be the perfect packing con-
po< o241 ) figuration, i.e.,4(t=0)=1 or ¢,(t=0)=1. Radii of particles
q ' are chosen randomly from two sizes. Periodic boundary con-
While the closest packing density of the hexagonal structurelitions are taken for both directions of the simulation box.
is a simply decreasing function, the closest density of thelhe particle numbeN is fixed at 23 288 for the hexagonal
quadratic packing becomes larger with a larger dispersityand 10 000 for the quadratic configurations, throughout the
and will reach the maximum value gf;=4-2y2(=1.17)  simulations[13]. The time evolution of the system is per-
when o=12-1(=0.414 (see Fig. 2 Note that the maxi- formed by a event-driven molecular dynamics simulation.
mum density is larger than 2B(=1.15 which is the closest About 1¢ collisions are performed for each run and up to
density of the monodisperse system. Therefore, it is possib/@l2 independent samples are averaged for each density.
that the quadratic solid structure is stable arouodp) For the hexagonal packing configuration, the systems of
=(\2-1,4-2/2) in the dispersity-density parameter space. ©=0, 0.02, 0.04, 0.06, and 0.08 are studied. The time evolu-
These two structures, hexagonal and quadratic, can KN Of ¢(0=0.08 is shown in Fig. &). To determine the

characterized by bond-orientational ordBOO) parameters ~Critical density on the basis of this data, the dynamic scaling

[12]. The sixfold BOO parametesy is defined to be analysis is performed. The melting transition of the monodis-
perse hard-disk system is predicted to be the KT transition

1 exp(6i 6y) [12] (see the review by Strandbufd4]) and a number of
¢6_N%E| n (5 studies have supported this predictiph0,15. Therefore,
systems with small dispersity are also expected to have a KT
wheren, denotes the number of neighbors of partikleand  transition. Accordingly, the dynamic KT scalif@] is per-

6 denotes the angle between a fixed axis and the bond cofermed in order to determine melting points from the results.
necting particlek andl. The sixfold parametegs becomes Near the critical point, a natural scaling form of the BOO
1 when the structure of the system is the perfect hexagonaharameter is expected to be

N N
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TABLE |. The dispersity effect on the melting points. The criti-
cal points and exponents between the isotropic and hexatic phases
are shown for several dispersities.

o 0 0.02 0.04 0.06 0.08
pi 0.8932) 0.8982) 0.9011) 0.91315 0.9352)
A 0.022) 0.082) 0.1015) 0.081) 0.1X(1)

— ()N _pbi~p s 10 108 108 10°
Po(t,e) = 1(e) " Pe(t/r(e)) | & o) (6)

time

with a correlation timer, an exponenk, and a critical point o (b)
pi. While the correlation time depends on the density, the
dynamic exponenk is independent of the densitit is only -
a function of dispersity Based on Eq(6), the relaxation 108} /
curves of ¢ plotted as a function off 7 will collapse to a 7
single curve with appropriately chos@nand (¢).

In the KT transition,ihe correlation length diverges expo- 1051 () ©
nentially asé~ exp(a’/+e) [16]. On the basis of the dynami- o exp(";;/C)
cal scaling hypothesigl7], the relation betweeg and 7 is /
expected to ber=¢ with a dynamic exponent and the

tllle

H H H H 3 104 1 1 1 1
divergence behavior of the relaxation timés expected to o5 096 007 098 099 1
be
p
—
() =b exp(a/\e). (7 FIG. 5. (a) Relaxation behavior ofp, of the system witho

Th itical Doi be d ined by fitti he di =0.4. The decimal logarithm is taken for the horizontal axis.
e critical point can be determined by fitting the IVEIGeNncCe iretime of the guadratic structure. The decimal logarithm is taken

behavior(7) to 7(e) obtained above. One can only scale thetor the vertical axis. The lifetime is found to increase exponentially.

results in the disordered phage< p;) since the correlation The solid line is drawn for visual referen¢€=0.01).

time of the system involving the KT transition always di-

verges in the ordered phage> p;). For the quadratic packing configuration, systems whose
The scaled result is shown in Figt3. While the data of  dispersities arer=0.3—0.5 are studied. For the casescof

p=<0.912 collapse onto a single curve, the data of =0.3 and 0.5, the quadratic structure was destroyed quickly

=0.914 do not. The determined critical points for each dis-even at the highest density. Therefore, if a quadratic solid

persity are listed in Table | and plotted in Fig. 4. The meltingexists, it is expected to be in the region of 8.3 <0.5. The

points are found to be almost proportional to the square ofelaxation behavior of, at 0=0.4 is shown in Fig. &). The

the dispersity. The hexagonal solid phase cannot exist in thiggure shows that the quadratic structure is stable for a certain

regiono>0.1 since the density of the melting transition will period, and it is destroyed after that. The lifetitg is de-

be higher than the highest density limit of the hexagonafined by ¢,(t=t;)=0.5. The density dependence of the life-

packing configuration.

time is shown in Fig. o). Although the transition behavior
of the quadratic solid is not observed, the lifetime diverges

12 exponentially. Note that the lifetime should be infinite at
1.15 3 (o,p)=(\e“§—1,4—2\s’2) since all particles are in contact with
11t o the four neighbor particles and therefore cannot move.
1.05 To summarize, the size dispersity effects on two types of
o 1 order, he_xatic anq quadrgtic, are studied'in hard—disk_ systems
005 Solid Phase with equimolar bidispersity. By considering the relation be-
e tween the closest packing density and the dispersity, we have
0.9 g predicted(i) the phase boundary of the hexagonal solid and
0.85 | Fluid Phase (i) the existence of the quadratic solid. Particle simulations
08 have been performed in order to investigate the stability of

0 0002 0004  0.006
Loy

0.008 0.01

the hexagonal and quadratic structures. From the dynamic
KT scaling analysis of the bond-orientational order param-

FIG. 4. The shift of melting points between the isotropic and €ters, the melting points of the hexagonal structure have been

hexatic phases. The range of the hexatic phase is not shown sincedeétermined to be a function of dispersity. The critical densi-
is too narrow at the scale of this figure. The melting points areties become higher at higher dispersities, and the shift in
found to be almost linear to®. The hexagonal solid phase can exist density is proportional to the square of the dispersity. This
only in the regiono<0.1. result is consistent with past researetl. The hexagonal
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solid phase cannot exist in the regiot> 0.1 since the melt- The discussion of the relation between the closest density
ing density becomes higher than the density limit of the hexand the dispersity is difficult to apply to polydisperse sys-
agonal structure. Sadr-Lahijary al. studied Lennard-Jones tems in general. Possible other structures are not considered
systems with dispersity and reported that the intermediat@ere. These problems should be addressed in future studies.
hexatic phase vanished at=0.097, which is close to our

result[5]. While they concluded that the vanishing point is ~ This work was carried out on the SGI 2800 at the Super-
the multicritical point and the line of first order transitions computer Center, Institute for Solid State Physics, University
separates the liquid and solid phases, we have not obtained Tokyo, and on the CP-PACS at the Center for Computa-
similar results yet since it is more difficult to study the highertional Physics, University of Tsukuba. We thank S. Miyashita
density of hard-disk systems than Lennard-Jones systemfar valuable discussions. This work was partly supported by
The stability of the quadratic structure is examined, andhe Nestlé Science Promotion Committee, Grant-in-Aid for
found to be metastable aroufiat, p)=(y2-1,4-2/2). It is Scientific ResearcliC) No. 15607003 of the Japan Society
not yet clear whether the quadratic structure is a thermodyfor the Promotion of Science, and Grant-in-Aid for Young
namic phase, since no transition behavior is observed. In thiScientists(B) No. 14740229 of the Ministry of Education,
work, only equimolar bidisperse systems have been studied:ulture, Sports, Science and Technology of Japan.
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