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In order to investigate the effect of size dispersity on two-dimensional melting transitions, hard-disk systems
with equimolar bidispersity are studied by means of particle dynamics simulations. From the nonequilibrium
relaxation behaviors of bond-orientational order parameters, we find thatsid there is a critical dispersity at
which the melting transition of the hexagonal solid vanishes andsii d the quadratic structure is metastable in a
certain region of the dispersity-density parameter space. These results suggest that the dispersity not only
destroys order but produces new structures under certain specific conditions.
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Recently, there has been considerable interest in the melt-
ing behavior of systems with size dispersity, i.e., these sys-
tems in which the radii of constituent particles are not all
identical. The randomness involved in the size dispersity of
particles has been found to play an essential role in the be-
haviors of complex systems such as colloidal systems and
granular media; for example, highly inhomogeneous force
networks are involved because of size dispersity in granular
mediaf1g and in segregation behavior in a rotating drumf2g.
Therefore, investigations of the influence of size dispersity
will be fruitful for understanding such complex systems. The
effect of the size dispersity was first treated by Dickinson
and Parkerf3g. They investigated the phase diagram of a
model colloidal dispersion. Vermölen and Ito studied the
melting behavior of elastic-disk systemsf4g. By observing a
plateau in the pressure-density diagram, they found that there
are no quantitative differences between the behaviors of bi-
nary and Gaussian distributed dispersion systems. They also
found that the intermediate phase between the solid and the
fluid phase vanishes above a critical dispersity. Sadr-
Lahijany et al. studied the density-dispersity phase diagram
of Lennard-Jones particle systemsf5g. They observed that
there is a critical value of dispersity above which the phase
transition between the solid and fluid phases become of first
order. They concluded that there is a multicritical point in the
density-dispersity phase diagram.

In spite of these studies, two issues remain; the reason
why the melting transition disappears, and the possibility of
other regular structures in the system with dispersity aside
from the hexagonal structure. In order to answer these ques-
tions, the hard-disk system with size dispersity is studied in
this work by observing the nonequilibrium behavior of bond-
orientational order parameters. A method to study critical
phenomena using the nonequilibrium relaxation process of
systems is called the nonequilibrium relaxationsNERd
method. This method provides critical points and critical ex-
ponents accuratelyf6,7g. It has also been applied to investi-
gate the Kosterlitz-ThoulesssKTd transitionf8g and random
systemsf9g. Recently, the melting behavior of the hard-disk

system was studied by the NER method. The critical pointri
between the hexatic and solid phases was determined by a
dynamic scaling analysisf10g and the critical exponent was
also determined by observing the fluctuation of the order
parameterf11g. This scaling technique for determining the
melting point can be applied directly to the system with dis-
persity.

In this work, hard-disk systems with equimolar bidisper-
sity stwo kinds of particles of the same numberd are treated.
The density of the system is defined to ber=4oi

Nr i
2/A, with

the number of particlesN, radiusr i, and area of the systemA.
With this definition, the density is normalized to be 1 when
the system is in the quadratic dense packing configuration.
The dispersitys is defined by the ratio of the standard de-
viation to the average radius. For the equimolar bidisperse
system, s=sra−rbd / sra+rbd with two radii ra and rbsra
. rbd.

The closest density of the system depends on its disper-
sity. In the infinite monodisperse system, the closest packing
configuration is the hexagonal one and its density is 2/Î3.
Here, the closest density of the hexagonal packingrh is con-
sidered in order to investigate the effect of dispersity. The
closest hexagonal packing with the dispersity is achieved
when the larger particles are just in contactfsee Fig. 1sadg.
The closest density is expected to be

rh =
ra

2 + rb
2

Î3ra
2

. s1d

Equations1d is also expressed to be

rhssd =
2
Î3

s2 + 1

ss + 1d2 . s2d

Clearly, rhs0d=2/Î3 whenra=rb. While Eq. s2d is a simply
decreasing function of dispersitys, the melting point will
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FIG. 1. Structures of the bidisperse system.sad Hexagonal struc-
ture. sbd Quadratic structure.
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shift to a higher density with a larger dispersity since it be-
comes more difficult to maintain a regular structure with
dispersity. Therefore, the melting point will disappear in the
dispersity-density parameter space when the melting density
becomes higher than the highest density of the hexagonal
structure.

For the case of the bidisperse system, the regular qua-
dratic structure can be considered as shown in Fig. 1sbd.
There are two conditions in the relation between density and
dispersity; one is that overlapping does not occur between
two larger particles and the other is that overlapping does not
occur between larger and smaller particles. These conditions
can be expressed withs as

rq ,
2ss2 + 1d
ss + 1d2 and s3d

rq , s2 + 1. s4d

While the closest packing density of the hexagonal structure
is a simply decreasing function, the closest density of the
quadratic packing becomes larger with a larger dispersity,
and will reach the maximum value ofrq=4−2Î2s.1.17d
when s=Î2−1s.0.414d ssee Fig. 2d. Note that the maxi-
mum density is larger than 2/Î3s.1.15d which is the closest
density of the monodisperse system. Therefore, it is possible
that the quadratic solid structure is stable aroundss ,rd
=sÎ2−1,4−2Î2d in the dispersity-density parameter space.

These two structures, hexagonal and quadratic, can be
characterized by bond-orientational ordersBOOd parameters
f12g. The sixfold BOO parameterf6 is defined to be

f6 =
1

N
o
k

N

o
l

nk exps6iukld
nk

, s5d

wherenk denotes the number of neighbors of particlek, and
ukl denotes the angle between a fixed axis and the bond con-
necting particlesk and l. The sixfold parameterf6 becomes
1 when the structure of the system is the perfect hexagonal,

and becomes 0 when the structure is completely disordered.
Therefore,f6 describes how close the system is to the per-
fect hexagonal structure. The fourfold parameterf4 is simi-
larly defined asf4=kexps4iudl. This parameterf4 describes
how close the system is to the perfect quadratic structure.

We perform particle simulations and observe the nonequi-
librium relaxation behavior of the BOO parameters. The
starting configuration is set to be the perfect packing con-
figuration, i.e.,f6st=0d=1 or f4st=0d=1. Radii of particles
are chosen randomly from two sizes. Periodic boundary con-
ditions are taken for both directions of the simulation box.
The particle numberN is fixed at 23 288 for the hexagonal
and 10 000 for the quadratic configurations, throughout the
simulationsf13g. The time evolution of the system is per-
formed by a event-driven molecular dynamics simulation.
About 109 collisions are performed for each run and up to
512 independent samples are averaged for each density.

For the hexagonal packing configuration, the systems of
s=0, 0.02, 0.04, 0.06, and 0.08 are studied. The time evolu-
tion of f6ss=0.06d is shown in Fig. 3sad. To determine the
critical density on the basis of this data, the dynamic scaling
analysis is performed. The melting transition of the monodis-
perse hard-disk system is predicted to be the KT transition
f12g ssee the review by Strandburgf14gd and a number of
studies have supported this predictionf10,15g. Therefore,
systems with small dispersity are also expected to have a KT
transition. Accordingly, the dynamic KT scalingf8g is per-
formed in order to determine melting points from the results.
Near the critical point, a natural scaling form of the BOO
parameter is expected to be

FIG. 2. Predicted phase boundaries of the equimolar bidisperse
systems. Units of all plots in this paper are dimensionless. Solid
lines: 1. Upper density limit of the hexagonal structurerhssd in Eq.
s2d. 2. The highest density of the hexagonal packingr=2/Î3. 3. A
condition for highest density of the quadratic packing in Eq.s3d. 4.
Another condition for the quadratic packing in Eq.s4d. Dashed lines
are expected lower boundaries of the hexatic 5 and of the quadratic
solid 6. Other possible structures are not shown here.

FIG. 3. The system ofs=0.06. The decimal logarithm is taken
for both axes.sad Relaxation behavior off6. sbd Scaled data. While
the data ofrø0.912 are collapsed to the single curve, the data of
rù0.914 are not.
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f6st,«d = ts«d−lf̄6„t/ts«d… S« =
ri − r

ri
D , s6d

with a correlation timet, an exponentl, and a critical point
ri. While the correlation time depends on the density, the
dynamic exponentl is independent of the densitysit is only
a function of dispersityd. Based on Eq.s6d, the relaxation
curves oftlf6 plotted as a function oft /t will collapse to a
single curve with appropriately chosenl andts«d.

In the KT transition, the correlation length diverges expo-
nentially asj,expsa8 /Î«d f16g. On the basis of the dynami-
cal scaling hypothesisf17g, the relation betweenj and t is
expected to bet=jz with a dynamic exponentz and the
divergence behavior of the relaxation timet is expected to
be

ts«d = b expsa/Î«d. s7d

The critical point can be determined by fitting the divergence
behaviors7d to ts«d obtained above. One can only scale the
results in the disordered phasesr,rid since the correlation
time of the system involving the KT transition always di-
verges in the ordered phasesr.rid.

The scaled result is shown in Fig. 3sbd. While the data of
rø0.912 collapse onto a single curve, the data ofr
ù0.914 do not. The determined critical points for each dis-
persity are listed in Table I and plotted in Fig. 4. The melting
points are found to be almost proportional to the square of
the dispersity. The hexagonal solid phase cannot exist in the
regions.0.1 since the density of the melting transition will
be higher than the highest density limit of the hexagonal
packing configuration.

For the quadratic packing configuration, systems whose
dispersities ares=0.3–0.5 are studied. For the cases ofs
=0.3 and 0.5, the quadratic structure was destroyed quickly
even at the highest density. Therefore, if a quadratic solid
exists, it is expected to be in the region of 0.3,s,0.5. The
relaxation behavior off4 at s=0.4 is shown in Fig. 5sad. The
figure shows that the quadratic structure is stable for a certain
period, and it is destroyed after that. The lifetimetlife is de-
fined byf4st= tlifed=0.5. The density dependence of the life-
time is shown in Fig. 5sbd. Although the transition behavior
of the quadratic solid is not observed, the lifetime diverges
exponentially. Note that the lifetime should be infinite at
ss ,rd=sÎ2−1,4−2Î2d since all particles are in contact with
the four neighbor particles and therefore cannot move.

To summarize, the size dispersity effects on two types of
order, hexatic and quadratic, are studied in hard-disk systems
with equimolar bidispersity. By considering the relation be-
tween the closest packing density and the dispersity, we have
predictedsid the phase boundary of the hexagonal solid and
sii d the existence of the quadratic solid. Particle simulations
have been performed in order to investigate the stability of
the hexagonal and quadratic structures. From the dynamic
KT scaling analysis of the bond-orientational order param-
eters, the melting points of the hexagonal structure have been
determined to be a function of dispersity. The critical densi-
ties become higher at higher dispersities, and the shift in
density is proportional to the square of the dispersity. This
result is consistent with past researchf4g. The hexagonal

TABLE I. The dispersity effect on the melting points. The criti-
cal points and exponents between the isotropic and hexatic phases
are shown for several dispersities.

s 0 0.02 0.04 0.06 0.08

ri 0.893s2d 0.898s2d 0.901s1d 0.913s15d 0.935s2d
l 0.02s2d 0.08s2d 0.10s15d 0.08s1d 0.11s1d

FIG. 4. The shift of melting points between the isotropic and
hexatic phases. The range of the hexatic phase is not shown since it
is too narrow at the scale of this figure. The melting points are
found to be almost linear tos2. The hexagonal solid phase can exist
only in the regions,0.1.

FIG. 5. sad Relaxation behavior off4 of the system withs
=0.4. The decimal logarithm is taken for the horizontal axis.sbd
Lifetime of the quadratic structure. The decimal logarithm is taken
for the vertical axis. The lifetime is found to increase exponentially.
The solid line is drawn for visual referencesC=0.01d.
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solid phase cannot exist in the regions.0.1 since the melt-
ing density becomes higher than the density limit of the hex-
agonal structure. Sadr-Lahijanyet al. studied Lennard-Jones
systems with dispersity and reported that the intermediate
hexatic phase vanished ats.0.097, which is close to our
result f5g. While they concluded that the vanishing point is
the multicritical point and the line of first order transitions
separates the liquid and solid phases, we have not obtained
similar results yet since it is more difficult to study the higher
density of hard-disk systems than Lennard-Jones systems.
The stability of the quadratic structure is examined, and
found to be metastable aroundss ,rd=sÎ2−1,4−2Î2d. It is
not yet clear whether the quadratic structure is a thermody-
namic phase, since no transition behavior is observed. In this
work, only equimolar bidisperse systems have been studied.

The discussion of the relation between the closest density
and the dispersity is difficult to apply to polydisperse sys-
tems in general. Possible other structures are not considered
here. These problems should be addressed in future studies.
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